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A numerical method for a converging cylindrical shock 

By R. B. PAYNE 
Computing Laboratory, University of Munchester 

(Received 9 November 1956) 

SUMMARY 
The finite difference method due to Lax (1954) is used to solve 

the equations of motion for a cylindrically symmetric flow of a 
compressible fluid. In  particular, a converging cylindrical shock 
is found to increase in strength in agreement with the formula of 
Chisnell(l957). The artificial diffusion introduced by the method 
causes the pressure to remain finite at the axis, but a reflected 
diverging shock is obtained. 

1. INTRODUCTION 
It is well known that a cylindrical shock wave in a Compressible fluid 

increases in strength as it converges towards the axis. Some spectacular 
photographs of shocks strengthened in this way have been obtained from 
experiments performed by Kantrowitz (195 1). 

The problem when the shock has infinite strength has been successfully 
solved by Guderley (1942) and Butler (1954), the solution being singular 
at the axis. For any practical gas there is always some viscosity or heat 
conduction present which will cause the pressure to remain finite 
throughout. 

Neumann & Richtmyer (1950) have described a finite difference method 
for calculating compressible fluid flows containing shock waves, a feature 
of which is the introduction of an artificial diffusion term. In a modification 
of this method by Lax (1954), the coefficient of the diffusion term is 
Axz/(ZAt), where Ax is the width of the space mesh and At the time interval. 
Although this is not the correct viscosity or heat conduction term, the effect 
on the flow will be similar, except in the structure of the diffused shock. 
In these methods the shock is not regarded as an interior boundary, but 
appears as a steep gradient of the variables over a few mesh points. The 
amount of diffusion introduced is very large, as may be seen by considering 
the width of the shock. For air at 300"K, the width is of the order of a 
few mean paths; so that if the flow in one-thousandth of a centimetre of 
air is considered (this distance being covered by 100 mesh points, which 
entails a reasonable length of calculation), the amount of diffusion introduced 
is comparable with what it would be for real viscosity and heat conduction. 

In  this paper, calculations by Lax's method of flows involving converging 
cylindrical shocks are described. It is necessary to give special consideration 
to the flow at the axis, and a reflected diverging shock is obtained in each 
case. The pressure at the axis remains finite due to the diffusion introduced. 
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The converging shock is started by taking initial conditions as in a shock 
tube, namely by considering a cylindrical diaphragm separating two uniform 
regions of a gas at rest with a higher pressure in the outside region, the flow 
being started by the rupture of the diaphragm. Let the ratios of the pressures 
and densities on the two sides of the diaphragm bep* and p"(p" > 1). In a 
shock tube, if p* = p* (that is, the uniform temperature on the two sides 
is the same), a shock travels into the low-pressure region followed by a 
contact surface, and an expansion fan travels into the high-pressure region. 
By a suitable choice of p* and p", it is possible to obtain a shock wave and 
expansion fan with no contact surface. 

In this way a converging cylindrical shock of strength 2 is obtained 
(the strength of a shock is defined as the pressure ratio across it). It is 
found that the contact surface does not affect the converging shock, which 
behaves identically for the flow without a contact surface. When stronger 
shocks are considered, the inaccuracy of the method in the vicinity of the 
contact surface is apparent, and it becomes necessary to eliminate the 
contact surface by having the gas outside the cylindrical diaphragm initially 
at a higher temperature than that inside. For a shock of initial strength 8, 
it is found that the inaccuracy of the calculations for the part of the flow 
occupied by the expansion fan also affects the region of the converging shock. 

In each case the calculations were performed with a set of mesh points 
uniformly spaced from the axis to twice the radius of the cylindrical 
diaphragm. The mesh width is taken as 1/64 of the radius. For 140 
time steps of the integration over these 128 points, the time taken on the 
Manchester University Mark I electronic digital computer was 5 hours. 
(This included the repetition of each step to provide a check by the 
consistency of the computer.) Each calculation was repeated with a coarser 
mesh of twice this width. One calculation was also performed with half 
this mesh width, taking 16 hours of computing time. The width of the 
shock is proportional to the mesh width. 

The strength of the converging shock is found to be in good agreement 
with the formula given by Chisnell (1957). Near the axis the strength 
falls below his predicted value. The amount of entropy left behind the 
outgoing shock is also calculated. 

2. METHOD 
2.1. Dzzerential equations of motion 

The cylindrically symmetric flow of an inviscid compressible gas with 
constant specific heats and without heat conduction satisfies the following 
equations : 

a a 
( Y P )  4 (YPU) = 0, ( 1  4 

a a aP 
- ( Y P U )  + at (rpu2) + Y 7& = 0, 

d d 

at ;rY 
-(YE)+ -(YEu+Ypu) = 0,  
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in which r is the distance from the axis, t the time, u the velocity, p the 
density, p the pressure, and E is the sum of the internal energy and kinetic 
energy per unit volume: i.e. 

where y is the ratio of the specific heats. 
Equations (1) may be made non-dimensional by putting 

r = ror', where r,,, a constant, is the radius of the diaphragm; 
p = pop', where po is the initial density of the gas inside the 

p =pop ' ,  where p ,  is the initial pressure of the gas inside the 

u = u,,u', where uo = (ypo/po)1/2 is the velocity of sound in the gas 

t = tot' ,  where to = ro/u,, ; 
E = p o E .  

diaphragm ; 

diaphragm ; 

inside the diaphragm ; 

This gives a a 
- (r'p') + 
at' ar 

(r'p'u') = 0, 

a (r'p'u') + p a ( r ' p ' ~ ' ~ )  + ylW - aPr 1- 0 
r' ' 

a a 
at' ar - (r'E') + I (r'EIu' + r'p'u') = 0, 

where E' = - p' + Y-p'u12. 
y - 1  2 

Hereafter these non-dimensional variables will be used and the primes 
will be omitted. 

It is convenient to introduce new variables a = rp, b = rpu, c = rE. 
The equations of motion then become 

where 

ab - + - a (bu) + y-% xr aP = 0, 
at ar 

(3 c) 

(4 a) 

(4 b) 

ac a 
at ar 
- + - (cu + rpu) = 0, 

a 

a 

p = , ,  

u=P 

2.2. Finite dtzerence equations 

Consider a set of mesh points r = k Ar, t = t,, where k and n are non- 
negative integers and where Ar is a constant such that K = (Ar)-l is an 
integer. Let t,+l- t, = Atn, and let +k,n denote +(r,  t ) ,  where r = rk = k Ar 
and t = tn. 

iVZ 
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Let us postpone discussion of the fact that equation (3 b) is not in the 
‘ conservation form ’ desired by Lax (see $2.3),  and, otherwise following 
him, replace derivatives by differences as follows. At the point r = rk, 
t = t,,, replace. 

1 

?$ by +k ,n+l -  d + k + l , n  + +k-l ,n)  9 (5 a) 
at At, 

and 4 k + l , n  -+k-l ,n 

2Ar ?! by 
a r  

We hence obtain explicit equations for the values of the variables a, 6 ,  c 
at time tn+l in terms of the variables at time. tn, namely 

At ,  

1 A t n  

bk,n+l = & ( b k - l , ~ ~  + b k + l , n )  f i&, {bk-l,n Uk- l ,n -  bk+ l ,nUk+l ,n+  

+ y-1’2yk(Pk-l ,n-Pk+l ,n)} ,  (6 b) 

Ck,n f l  = -dCk-l ,n + C k + l , J  + Kr (Ck-1,n Uk-l,n - Ck+l,n Uk+l ,n  + 

+ rk-i P k - l , , ~  U k - i , ~ ~  - r k + l  P k + l , n  Uk+l ,n)* (6  c, 
From these equations the values of u, p and p are obtained by equations (4 ) .  
I t  may be remarked that (i) equations (6) do not apply for k = 0, and 
(ii) the values of variables at points on the two staggered lattices, k + n even 
and k + n  odd, are independent of each other. 

2.3. The pressure term 

As remarked above, the pressure term y-lI2r aplar in the momentum 
equation (3 b) is not the deriyative of a function of r as is desired for Lax’s 
method. The effect of the pressure is clearer when the difference equations 
are derived from the conditions of conservation of mass, momentum 
and energy in the space 

( k - l ) A r < r Y ( k + l ) A r ,  
o~ e e ,  

where 8 is the azimuthal angle and E < 1. 
the terms involving the pressure are 

In  the momentum equation, 

Possible approximations for J p dr are 

(Pk-1,n + P k + l , n ) A r ,  (7 a) 

2Pk.n Ar, (7 b) 
B(Pk-l ,n 1 +4Pk,n + P k + l , n )  Ar. (7 c) 

The calculation of a particular flow was done using each of these. three 
approximations in turn, and the solutions after 60 time steps were compared. 
It was found that away from the shock the differences between the solutions 
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were negligible, and even at the shock the results. for u, p and p differed by 
less than 1%. In  view of this, the approximation (7a), which has the 
advantage that the two staggered lattices are independent, was chosen. 

2.4. Theflow at the axis 
At the axis (k  = r = 0), we have u = 0 and also a = rp = 0, b = rpu = 0, 

c = rE = 0. To obtain the density and pressure it is necessary to resort 
to an approximation different from (6). Several formulae for the density 
and pressure were deduced, and many of these were used in trial calculations. 

The conservation of mass in a cylinder of radius Ar may be written 
r=Ar 

2i a { r-0 p(r, t )  d(r2) + 2 Arp(Ar, t)u(Ar, t )  = 0. 

Taking the approximation i ( p ( 0 ,  t )  +p(Ar, t))Ar2 for this integral, and by 
similarly considering a cylinder of radius 2Ar, we obtain 

(8 a) 
Atn 11 

~ o , n + 1  = P1.n + ( b 3 , n  ~ 3 , n  - ~ ~ 1 , n  ~ 1 , t r ) .  

From consideration of conservation of energy we similarly obtain 

In  common with equations (6), equations (8) use a staggered mesh. 
When trial calculations were made, it was found that in the pressure 

and density at the axis, oscillations deGeloped and rapidly increased in 
amplitude. (The oscillations for the two independent staggered lattices 
usually differed in phase and amplitude.) It was found that this numerical 
instability appeared to be eliminated by using the approximation (7 c) at 
the point k = 1 .  Thus, for k = 1 ,  equation (6 b) is replaced by 

In all calculations done with this modification to equations (6), oscillations 
at the axis did not appear. However, the term inp,,, makes the two staggered 
lattices no longer independent of each other. 

2.5. Initial conditions 
To calculate the flow near the axis it was found necessary to perform 

the integration simultaneously for the two staggered lattices. (That is, the 
calculation is performed at all the points k = 0, 1 , 2  ... at each step in time 
n = 0, 1 ,  Z... .) This adds importance to the precise initial values of the 
variables in the neighbourhood of the diaphragm. At the diaphragm R = K,  
the variables are chosen so that aK,o, Z I ~ , ~ ,  are the respective averages for 
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k = K 1 of a&,,, b , , ,  c ~ , ~ .  Thus the initial conditions are taken as 

uk,, = 0, for all K, 
Pk,O = p k , ,  = for k < K ,  

Ar 
PK,, = H P " +  I)+ r ( P " -  l), 1 I 

I Ar 
2 P , ,  = :(P" + 1) + - (P" - 11, 

Pk.0 = P*, Pk.0 = p*, for < K, 
where p" and p" are constants. 

2.6. The time interval 
In his paper Lax mentioned the Courant-Friedrichs-Lewy criterion as 

a necessary condition for the stability of this numerical method. In this 
problem the largest velocity is that of the shock, so that this necessary 
condition for stability is 

At,/Ar < l/(velocity of shock wave). 
Also, the width of the shock depends on the value of AtJAr, and is smallest 
when this is as large as possible. 

A series of trial calculations were made choosing At, so that 
Atn/Ar = A/(velocity of shock wave), 

where A assumed various constant values. For a weak shock the method 
of calculation was unstable with A = 0.9, but with A GO.85 it appeared 
to be stable. (Any instability first showed at the rear of the shock.) Hence 
the time interval was chosen as above with A = 0.85. For stronger shock 
waves this choice of time interval also gave instability, and for the strongest 
shock (initial strength 8) it was found necessary to further reduce the time 
interval by taking A = 0.75. 

Throughout, the time interval was chosen for the next step from the 
shock velocity in the previous step, which does not involve any iteration. 
This shock velocity was calculated from the distance moved by the shock, 
the position of the shock (r  = R) being determined from the pressure 
distribution. This was done by linearly interpolating in the table of p , ,  

against r k  to find the point where p is the average of the pressures behind 
and in front of the shock. The pressure behind the shock is taken as the 
local maximum value of P ~ , ~ .  For the shock converging towards the axis, 
the pressure in front of the shock was taken as P,,?~, the pressure at the axis. 
For the diverging shock, the pressure in front of the shock was defined as 
the pressure at the point where p(r  - Ar, tn)  -p(r,  tn) -- B, where suitable 
values for the constant B were found to be : 0.1 for a weak shock of strength 2 
initially; 0.2 for a shock of initial strength 4; 0.4 for a strong shock of 
strength 8 initially. 

When near the axis, the position of the shock is not identified sufficiently 
accurately. The procedure adopted was to keep the time interval constant 
at the value it has obtained as the axis is approached. When At,L was kept 
at this small value, the reflected shock was so diffused that it was impossible 
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to recognize it. The outgoing shock travels at a lower velocity, thus 
permitting a larger time interval. Therefore, after a few steps, a larger 
constant time interval At, = C was taken. The value of C was chosen so 
that when it was possible to adjust the time interval from the velocity of 
the outgoing shock, the value of At, was then slightly greater than C. 

This method of adjusting At, was found to be sufficient to prevent the 
appearance of numerical instability due to the use of too large a time interval, 
and to avoid excessive spreading of the shock due to taking Atn much smaller 
than the permissible maximum. 

3.1. Initial pressure and density ratio 4 
For a shock tube, the initial conditions specified by p' = p* = 4 give 

a shock of strength 1.93, a contact surface and an expansion fan. The 
solution is obtained for a cylindrical diaphragm with these initial conditions, 

10 t 0.8 
8 

P 

6 

4 

2 

I I 
0 I r 2 

Figure 1. Pressure vus radius at intervals 0.2 of time for a flow initiated by a cylindrical 
diaphragm with initiat pressure and density ratios 4. The converging shock 
of initial strength 1.93 increases in strength and reaches the axis at t = 0.66, 
and a reflected shock is obtained. An expansion fan travels out from the 
diaphragm. The width of the space mesh used is 0.008 unite where the 
radius of the diaphragm is 1 unit, the pressure ahead of the converging shock 
being the unit of pressure. 
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a converging cylindrical shock initially of strength 1.93 being obtained. 
The mesh width A r =  1/128 is used. 

In figure 1 the pressure distribution is shown at intervals 0.2 of time 
(each representing about 40 steps of the integration). Apart from the 
first few steps of the integration, the shock appears as a rapid variation 
in p over about six points of the space mesh. As t increases and the shock 

1.0 L 

Figure 2. Velocity vs radius at intervals 0.2 of time for a flow initiated by a cylindrical 
diaphragm with initial pressure and density ratios 4. The unit of velocity 
is the velocity of sound in the undisturbed gas ahead of the converging shock. 

5 

4 

P 
3 

I 

0 1 r 2 
Figure 3. Density CIS radius at intervals 0-2 of time for a flow initiated by a cylindrical 

The contact surface i 
The density is unity ahead 

diaphragm with initial pressure and density ratios 4. 
spread over a large number of mesh points. 
of the converging shock. 
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moves in towards the axis, the strength of the shock is seen to increase. 
After the shock has passed, the pressure at any fixed point behind it continues 
to rise. When the shock reaches the axis, the pressure there rises to a high 
but finite value (figure 5), and a reflected diverging shock appears. The 
pressure at a fixed point behind the reflected shock decreases as t increases. 

1.8 

T 
1.6 

1.4 

1.2 

I .o 

0.8 
I a 6  

T 
1.4 

1.2 

0 -8 

Figure 4. Temperature os radius at intervals 042 of time for a flow initiated by a 
cylindrical diaphragm with initial pressure and density ratios 4. The diverging 
shock leaves a region of heated gas between the axis and the contact surface. 
The initial temperature of the gas is unity. 

In figure 2 the velocity of the gas in this flow is seen to behave similarly, 
except of course that the converging shock decreases the gas velocity from 
zero to a negative (inwards) value. The diverging shock increases the 
gas velocity to a small positive (outwards) value. Behind the converging 
shock, the velocity at a fixed point 'also increases with time and decreases 
when the diverging shock has passed. 

The graphs of the densitv (figure 3) are similar to those of the pressure, 
u -  . . u  

but the rise in density across the shock is smaller, corresponding to a 
temperature increase. In  the distributions of both density and temperature 
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(figure 4), the contact surface appears. Unlike the shock, this is far from 
being a discontinuity in these variables ; it is a gradual change spread over 
an increasing number of mesh points. The contact surface moves inwards 
behind the converging shock, and is traversed by the diverging shock. 
At t = 1-4, the shock has more or less passed the smudged contact surface, 
leaving a region of high temperature between the axis and contact surface 
(see $3.5). 

8 

6 

4 

P 

2 

0 

4 

i 

C 
0.4 

0.1 

0. ( 

P 

-U 

3 r =g 5011 

20 

I O -  

- 

0.4 0.8 t 1.2 0.6 A 0.7 t 0.8 
1st- / I  

L 
0 

Ft I \  
-/ 5t I 

I I I 

‘.U 
0.4 0.8 t 1.2 0.6 0-7 t 0 8  

f = 7  

&!* t 

Figure 5. Pressure, density and velocity vs time at the fixed point r = 0.375. At the 
axis r = 0, the two rapid changes in p and p when the conversing and diverging 
shocks pass are merged. The velocity is zero at the axis. 

The variation with time of the variables at fixed points r = 0 and 
r = 0-375 is shown in figure 5. Although the general features resemble 
the solution given by Guderley (1942), the magnitudes of the variables 
are considerably smaller since the condition of infinite shock strength is 
not fulfilled. 
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3.2. Stronger shock: heated external region 

With the above initial conditions (p" = p"), a contact surface is produced 
which cannot be satisfactorily treated by this method of Lax (1954). With 
the shock wave, where the density, velocity and pressure decrease in the 
direction of motion, there is the tendency of the flow to make the wave 
narrower, which balances the spreading effect of diffusion. With a contact 
surface, there is no such balancing effect and diffusion continues unimpeded. 
When a higher pressure ratio was used, the spreading of the contact surface 
increased and appreciably affected the shock. In order to eliminate the 
undesirable contact surface, values of p" and pb were chosen such that the 
shock-tube equations are satisfied with a contact surface of zero strength. 
For example, the values p" = 3-52!, p* = 2.44 satisfy the shock-tube 
equation with no contact surface and a shock of strength 1-93 (which is 
the same strength as that given by p" = p" = 4). With these initial 
conditions, the converging cylindrical shock behaves identically. Differences 
in the diverging shock only occur when in the former case (p" = p" = 4) 
the contact surface is traversed. On passing into a colder region, the shock 
travels more slowly. Similarly, the outgoing expansion fan travels more 
quickly in the latter case when the external region is at a higher 
temperature. 

By initially heating the external region to eliminate the contact surface, 
it is possible to obtain a stronger converging shock, and results were obtained 
for flows with shocks of initial strengths 4 and 8. A mesh width Ar = 1/64 
was used. The distributions of pressure, velocity, density and temperature 
at intervals 0.1 of time are shown for the latter example in figures 6 to 9. 
The general features of the behaviour of the variables are the same as for 
the weak shock (strength 1.93 initially). As predicted by Chisnell (see 
0 3.3), the stronger shock increases in strength more rapidly than the weak 
shock as it approaches the axis. 

From the pressure distributions (or perhaps more clearly from the 
velocity distributions), it will be seen that for the stronger shock flow the 
expansion fan has increased diffusion. (This is partly but not entirely due 
to the use of a coarser space mesh.) This diffusion is particularly notice- 
able in the first few steps of the integration. It is not unreasonable to 
suspect that the diffusion from the expansion fan may affect the converging 
shock. 

3.3. Strength of converging shock 

The position and strength of the shock at any instant of time are deduced 
from the pressure vs radius distributions such as are shown in figures 1 and 6 
(see 0 2.6). The strength of the shock is taken as the maximum value of the 
pressure in the p / r  distributions. Because of the spreading of the shock 
over several mesh points, the strength of the shock will be underestimated 
when the axis is approached, and the position of the shock is also possibly 
in error by the order of one mesh length. 
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P 

Figure 6. Pressure us radius at intervals 0.1 of time for a flow initiated by a cylindrical 
diaphragm with initial pressure ratio 38.2 and density ratio 10.7. The 
converging shock begins at strength 8 and reaches the axis at t = 0.31. 
Much greater rises in pressure are obtained with this stronger shock. The 
width of the space mesh is 0.016 and the pressure ahead of the shock is unity. 

3.0 

2.0 
- u  

1-0 

0.0 

Figure 7. Velocity vs radius at intervals 0.1 of time for a flow with a converging 
The velocity of sound ahead of the cylindrical shock of initial strength 8. 

converging shock is unity. 



A numerical method for a converging cylindrical shock 197 

Figure 8. Density ‘us radius at intervals 0-1 of time for a flow with a converging 
The density ahead of the converging cylindrical shock of initial strength 8. 

shock is unity. 

6 c 
h 0 . 4  

6 

5 

T 4  

3 

2 

I 

Figure 9. Temperature v s  radius at intervals 0.1 of time for a flow with a converging 
Initially the temperature between the cylindrical shock of initial strength 8. 

axis and diaphragm is unity, and beyond the diaphragm is 3-57. 
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In view of the crudeness of this part of the calculation, it is perhaps 
remarkable that the results obtained should fit a smooth curve of x us R, 
where x is the shock strength and R is the radius of the shock (figures 10, 11). 
The agreement with the formula (obtained by Chisnell (1957)) for the 
strength of a converging cylindrical shock is extremely good. The 
divergence from his predicted strength only appears near the axis and 
decreases with the mesh width. 

6 

5 

z 

4 

3 

2 

Figure 10. Shock strength vs radius for a converging cylindrical shock of initial 
The agreement with Chisnell’s formula is better when a finer strength 1.93. 

mesh is used. 

For a stronger shock the agreement is not so outstandingly good. The 
This deviation is attributed strength obtained is greater than Chisnell’s. 

to the effect of diffusion from the expansion fan (see $3.2). 
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I I I 
0 0.5 R I .o 

Figure 11. Shock strength vs radius for a converging cylindrical shock of initial 
strength 8. Errors arise from the diffusion of the expansion fan. 

3.4. Variation of gas constant y 

The results described above are for a gas with y = 7/5. The calculations 
were repeated for the flow with initial conditions specified by p" = p" = 4, 
with y = 513. The pressure distributions were very similar to the former 
flow, the initial shock being just slightly weaker. The variation of shock 
strength with distance from the axis was again in good agreement with 
Chisnell's theory. A larger density change across the contact surface was 
obtained. The temperature near the axis when the diverging shock had 
traversed the contact surface was much higher, being 1-95. The larger 
temperature variation was accompanied by a smaller gas velocity. 

3.5 .  Entropy increase due to cylindrical shock 
When the reflected diverging shock has travelled out, a region of gas at 

high temperature and almost at rest is left between the axis and the contact 
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surface (figures 2 and 4). The high temperature indicates that a con- 
siderable amount of energy has been dissipated by the shock. For a perfect 
gas without any diffusion, the flow is isentropic except on passing through 
the shock. There is no change in the entropy per unit mass in flow through 
the expansion fan, and there is no flow through the contact surface, at which, 
however, there is a discontinuity in entropy. Hence, when the diverging 
shock has passed, the total entropy of the gas between the axis and the 
contact surface will be constant (assuming no subsequent shocks pass 
through this region). This heated gas is the gas which was initially between 
the axis and the diaphragm, the shock having passed through it on both its 
inward and outward journeys. 

The entropy increase produced by the shock is calculated as follows. 
The contact surface r = tc is located by the fact that the mass of gas between 
the axis and contact surface is constant, that is, by finding tc such that 

j: 2rpr dr = 2rr dr = r .  J-: 
The total entropy per unit length in this gas is 

j; 2rc,(logp - logp)pr dr, 

where c, is the specific heat at constant volume. The integrals were evaluated 
by Simpson’s rule, and, for the flow with initial conditions specified by 
p* = pf = 4, gave large negative values for this entropy which also decrease 
with time. The initial entropy of this gas is zero, and the entropy per unit 
mass behind the initial shock is 0 . 0 1 1 ~ ~  and is greater for stronger shocks. 
However, the entropy per unit mass in the gas initially outside the diaphragm 
is -0.555cv, and diffusion of entropy across the contact surface exceeds 
the production of entropy by the shock. 

For the flow with the same initial shock strength but with the gas 
initially heated to give a contact surface of zero strength, the entropy per 
unit mass outside the diaphragm is 0.01 lc, which is the same as the entropy 
behind the initial shock. Diffusion across the contact surface will be 
reduced, making this a more suitable flow from which to calculate the 
entropy produced by the shock. The total entropy per unit length left 
between the axis and contact surface is found to be 0.077~~. This may be 
compared with a plane shock of strength 1.93 reflected normally by a plane 
solid wall. The increase in the total entropy in a mass r of gas is 0.063ct, 
for a plane shock reflection. 
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